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Abstract The scattering of a plane acoustic wave by a circular semi-transparent conical surface with impedance-
type boundary conditions is studied. The analytic solution is constructed on the basis of the incomplete separation
of variables and the reduction of the problem to a functional difference equation of the second order. Although the
latter is equivalent to a Carleman boundary-value problem for analytic vectors, the solution is studied by means
of the direct reduction method, that is, converting the functional difference equations to a Fredholm-type integral
equation. Its unique solvability is then studied and the expression for the scattering amplitude of the spherical wave
from the vertex is discussed. Some numerical results for axial incidence are also presented.

Keywords Carleman problems · Fredholm integral equation · Functional difference equation · Scattering
amplitude · Wiener–Hopf

1 Introduction

The theory of diffraction by a cone with ideal boundary conditions has been developed in numerous papers [1–6]
and others. The essential progress in the ideal boundary conditions is now obvious. In particular, in the works of
Smyshlyaev, Babich and their co-authors numerical results for cones of arbitrary shape have been obtained.

The impedance-type boundary conditions for cone problems were considered in [7–11]. The corresponding class
of problems is more complex, in particular, because it leads to a study of functional difference equations. The
theory of that kind of equations is closely related to some boundary-value problems for analytic vectors.1 It is well
known that application of the Fourier transformation to diffraction problems with semi-infinite “rectangular” geom-
etries (like diffraction by a half-plane) leads, by means of the Wiener–Hopf reduction procedure, to a Riemann–

1 In Appendix B we demonstrate the direct reduction of the second-order functional difference equations to a Carleman problem for
analytic vectors.
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Hilbert boundary-value problem for analytic functions (vectors). However, recently it has been demonstrated [12]
that the Laplace transformation applied to the diffraction problem in a wedge-shaped domain (like the Malyuzh-
inets problem) enables one to obtain generalized Wiener–Hopf equations which are then reducible to standard
Wiener–Hopf equations. Actually Daniele has demonstrated the equivalence of the problem for the Malyuzhi-
nets functional difference equations to that for the Wiener–Hopf equations. Some functional equations were also
exploited in [13] for splitting some Wiener–Hopf kernels. It is worth noting that in [14] the problem for the second-
order functional difference equation is reduced to a Riemann–Hilbert problem on a Riemann surface. Application
of the Kontorovich–Lebedev transformation and of the incomplete separation of variables to the diffraction by a
cone with impedance-type boundary conditions [7,8] enables one to obtain the second-order functional difference
equation which is a very natural tool also for the problem at hand. In [15,16] the system of Malyuzhinets’ func-
tional equations, obtained in the framework of the Sommerfeld–Malyuzhinets integral transformation, reduces to a
second-order functional difference equation and then directly to the integral equations (see also [17]). It seems that
this approach is an alternative to that in [12] and has some technical advantages because, contrary to the Wiener–
Hopf approach, it exploits a class of meromorphic functions (i.e., those having no branch points). In the present
paper we study diffraction of a plane acoustic wave by a semi-transparent conical surface; we apply and develop the
approaches of the papers [7] and [10]. The paper is organized as follows. We formulate the scattering problem and
partially separate the spherical variables. We obtain the functional difference equations for the Fourier coefficients
of the corresponding series. The functional difference equations are then transformed to a set of Fredholm integral
equations. Their properties and some other mathematical aspects of the problem at hand are studied in Appendices.
We then give a formula for the diffraction coefficient in the domain not illuminated by the rays reflected from the
conical surface. The numerical results are presented for different cone openings and surface impedances.

2 Formulation

Let a circular conical surfaceC divide the 3D space into two parts: the “exterior” part�1 (θ < θ1) and the “interior”
part �2 (θ > θ1), see Fig. 1, where the spherical coordinates (r, θ, ϕ) are related to the Cartesian ones (x1, x2, x3)

via

x1 = r sin θ cosϕ, x2 = r sin θ sin ϕ, x3 = r cos θ, (1)

where 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, r ≥ 0. The axis Ox3 coincides with the axis of symmetry (not shown in Fig. 1),
θ = θ1 is the equation of the conical surface with π/2 < θ1 < π .

The incident plane wave field in spherical coordinates is given by

Ui = e−ikr cos θ̂ (ω,ω0), k = �/c, (2)

where ω0 = (θ0, ϕ0) is the unit vector attached to the direction of incidence, ω = �r/r = (θ, ϕ), cos θ̂ (ω, ω0) =
cos θ cos θ0 + sin θ sin θ0 cos(ϕ − ϕ0), c is the wave speed in the acoustic medium. The harmonic dependence
on time e−i�t is omitted throughout the paper. We also assume that the incident wave illuminates completely the
conical surface from �1, that is, θ0 < π − θ1.

We look for the classical solution of the problem. The wave field Û (kr, ω, ω0) = U(kr, ω, ω0)+Ui(kr, ω, ω0)

in �1 and V (kr, ω, ω0) in �2 satisfy the Helmholtz equation(
� + k2

)
{U,V } = 0, (3)

and the boundary conditions

1

r

∂
(
U + Ui

)

∂θ

∣∣∣∣∣
C

− ikη
[(
U + Ui

)
− V

]∣∣∣∣∣
C

= 0, (4)

∂
(
U + Ui

)

∂θ

∣∣∣∣∣
C

= ∂V

∂θ

∣∣∣∣∣
C

, (5)
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Fig. 1 Diffraction by a semi-transparent cone

where η is the impedance of the surface which is independent of k and is bounded. We assume that Re η > 0 , i.e.,

the conical surface is absorbing. Equation 5 shows that the displacement ξ = 1
ρ�2

∂Û
∂θ

is continuous across the conical
surface, whereas condition (4) specifies the displacement due to the difference of the acoustic pressure outside and
inside the conical surface; ρ is the density of the surrounding medium. This type of conditions represents a simple
model of a thin semi-transparent surface. These conditions are traditionally deduced by means of an asymptotic
procedure applied to a canonical boundary-value problem for a thin curvilinear layer separating acoustic media
(see, e.g., [18,19]). The leading terms of the corresponding expansions enable one to conclude that the boundary
conditions (4) and (5) are valid in the leading approximation. It is easily demonstrated that, owing to the boundary
conditions, the rays of the incident wave penetrate through the semi-transparent conical surface without change of
the propagation direction and are reflected by the surface in accordance with geometrical optics; see Fig. 1.

Meixner’s condition is satisfied (r → 0)

|U | ≤ const rh, r |∇U | ≤ const rh, h > −1/2 , (6)

uniformly with respect to the angular variables.2 Similar conditions are valid for V .
Consider a unit sphere centred at the vertex O of the cone. The conical surface C separates the sphere into two

partsM1 andM2 with the boundary σ . We introduce the length of the geodesics (broken for the reflected wave, see
also [6,11] for definitions of θ̂ ′(ω, ω0)) on the unit sphere

θ̂ ′(ω, ω0) = inf
ω′∈σ

(θ̂(ω′, ω0)+ θ̂ (ω, ω′)), (7)

where θ̂ (ω′, ω0) is the distance between the points ω0 and ω′ on the unit sphere. The domain M1 can be also
subdivided into two parts M ′

1 = {θ, ϕ : θ̂ ′(ω, ω0) > π}, the angular domain, where only the spherical wave from
the vertex propagates at infinity and M ′′

1 = {θ, ϕ : θ̂ ′(ω, ω0) < π}, the subdomain being illuminated, in addition,
by the rays reflected from the cone. The common boundary l of M ′

1 and M ′′
1 is the curve of the so-called singular

directions. The details of the description above and the corresponding diagram can be found in [6]. In the domain
�1 for those directions satisfying

θ̂ ′(ω, ω0) > π, (8)

(the so-called “oasis”) the wave field at infinity has the form

2 The constant h solves a transcendental equation deduced in a traditional manner and, in particular, depends on the cone opening angle.
The explicit value of h is not exploited in the analysis below.
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Us(r, ω, ω0) = Du(ω,ω0)
eikr

−ikr
(1 +O(1/kr)), kr → ∞, (9)

where Du(ω,ω0) is a smooth function of ω provided the inequality (8) is valid. In the sub-domain

θ̂ ′(ω|C, ω0) < θ̂ ′(ω, ω0) < π (10)

the waves reflected from the cone and surface3 waves should be present. The singular directions form a surface
in �1

θ̂ ′(ω, ω0) = π. (11)

Remark 1 In the same manner, in the domain �2 for those directions satisfying

π > θ̂(ω, ω0) ≥ θ̂ (ω|C, ω0), (12)

from the scattered field of pressure V , beside the transmitted wave, we can extract the part related to the spherical
wave scattered by the vertex

V s(r, ω, ω0) = Dv(ω, ω0)
eikr

−ikr
(1 +O(1/kr)), (13)

where Dv(ω, ω0) is a smooth function.

The total field in�2 is the sum of the transmitted and spherical diffracted waves. The contribution of the surface
waves is negligible outside a close neighbourhood (θ̂ (ω, ω0) ∼ θ̂ (ω|C, ω0)) of the conical surface. The vicinity of
the direction θ̂ (ω, ω0) ∼ π is the zone of the complex interference behaviour in �2.

3 Kontorovich–Lebedev transform and problem for the spectral functions

The solution of the problem is based on the incomplete separation of variables. First, we separate the radial variable
and look for the solution in the form of Kontorovich–Lebedev integrals. For the incident wave we have [8]

Ui(kr, ω, ω0) = 4

i
√

2π

∫ i∞

−i∞
ν sin(πν) uiν(ω, ω0)

Kν(−ikr)√−ikr
dν, (14)

where

uiν(ω, ω0) = −
Pν−1/2

(
− cos θ̂ (ω, ω0)

)

4 cos(πν)
. (15)

Here Pν−1/2(x) is the Legendre function, Kν(z) is the modified Bessel (Macdonald) function

Kν(z) = −i
π

2
e−iνπ/2H(2)

ν (−iz).

The integral (14) converges exponentially provided

θ̂ (ω, ω0) >
π

2
+ |arg(−ik)| , |arg(−ik)| ≤ π/2. (16)

The latter is easily verified by means of the asymptotics (e.g. [20])

Kν(z) ∼ const
να cos

[
ν (π/2 + |arg(z)|)]

sin(πν)
,

as |Im ν| → ∞, |arg(ν)| → π/2, α = |Re ν| − 1/2, and ([21])

P
−|n|
ν−1/2(cos θ) =

√
2
(ν − |n| + 1/2)√
π sin θ 
(ν + 1)

cos
(
νθ − |n|π/2 − π

4

)(
1 +O

(
1

ν

))
,

3 The surface wave can be excited if Imη < 0.
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where |n| is bounded, δ < θ < π − δ, δ > 0 is small, |ν| � 1/δ , | arg(ν)| < π .
In view of the representation (14), it is reasonable to seek a solution in the form [8]

U(kr, ω, ω0) = 4

i
√

2π

∫ i ∞

−i ∞
ν sin(πν) uν(ω, ω0)

Kν(−i kr)√−i kr
dν, (17)

where the integral converges provided

θ̂ ′(ω, ω0) > π/2 + |arg(−i k)| , |arg(−i k)| ≤ π/2, (18)

V (kr, ω, ω0) = 4

i
√

2π

∫ i ∞

−i ∞
ν sin(πν) vν(ω, ω0)

Kν(−i kr)√−i kr
dν (19)

with the conditions (16).
Now we formulate the conditions which specify the class of spectral functions uν, vν in (17), (19) and ensure

that the representations solve the problem at hand. For compactness we give them for uν ; those for vν are similar.
Assume that uν(ω, ω0) is twice continuously differentiable on ω = (θ, ϕ), and has a continuous normal deriv-

ative on σ for any ν, in the strip�δ = {ν : |Re ν| < 1 + δ}, δ > 0, and is small. Besides, uν is even and is regular
in the strip �δ as well as the derivative ∂uν

∂θ
|σ . Let the spectral functions solve the problem for the equations

(
�ω + (ν2 − 1/4)

)
uν(ω, ω0) = 0, (20)

(
�ω + (ν2 − 1/4)

)
vν(ω, ω0) = 0 (21)

with the boundary conditions

∂Ûν+1

∂θ

∣∣∣∣∣
σ

− ∂Ûν−1

∂θ

∣∣∣∣∣
σ

= (−2ν)η
(
Ûν − vν

)∣∣∣∣∣
σ

, (22)

∂Ûν+1

∂θ

∣∣∣∣∣
σ

− ∂Ûν−1

∂θ

∣∣∣∣∣
σ

= ∂vν+1

∂θ

∣∣∣∣
σ

− ∂vν−1

∂θ

∣∣∣∣
σ

, (23)

where Ûν = uν + uiν, �ω is the Laplace–Beltrami operator on S2, �ω = 1

sin θ
∂θ (sin θ ∂θ ) + 1

sin2 θ
∂2
ϕ.

The integral (17) converges provided uν(ω, ω0) satisfies the estimate in the strip �δ

|uν(ω, ω0)| ≤ Const
|ν|κ

| cos[(π + ε)ν]| , θ̂ ′(ω, ω0) > π, κ ≥ 0, (24)

ε > 0 is small. Provided θ̂ ′(ω, ω0) ≤ π , we assume that

|uν(ω, ω0) | ≤ Const
|ν|κ1

| cos[νθ̂ ′(ω, ω0)]|
, κ1 ≥ −1/2. (25)

Analogous conditions are met for vν .
The reason for considering the problem (20–23) in the specified class of functions is as follows. Provided the

spectral functions satisfy the problem (20–23), the integral representations converge and can be substituted in the
Helmholtz equations and the boundary conditions. Moreover, the Meixner conditions and conditions at infinity are
also valid. Indeed, by the direct substitution of (14), (17), (19) in (3), with the aid of the Bessel equation forKν(z)
and (20), (21) we verify (see also [22]) that U(kr, ω, ω0), V (kr, ω, ω0) satisfy the Helmholtz equation.

Let us turn to the boundary condition (4) and substitute the representation (14), (17), (19). On taking into account
that

Kν(z)

z
= Kν+1(z)−Kν−1(z)

2ν
,
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we have
∫ i∞

−i∞
ν sin(πν)√−ikr

[
∂Ûν

∂θ

∣∣∣∣∣
σ

(−ik)
Kν+1(−ikr)−Kν−1(−ikr)

2ν
− ikη(Ûν − vν)

∣∣∣
σ
Kν(−ikr)

]
dν = 0.

Then

−ik√−ikr

{∫ i∞−1

−i∞−1

sin(πν)

2

∂Ûν+1

∂θ

∣∣∣∣∣
σ

Kν(−ikr) dν −
∫ i∞+1

−i∞+1

sin(πν)

2

∂Ûν−1

∂θ

∣∣∣∣∣
σ

Kν(−ikr) dν

+
∫ i∞

−i∞
sin(πν)

2
2η ν (Ûν − vν)

∣∣∣∣
σ

Kν(−ikr) dν

}
= 0

and finally

−ik√−ikr

(∫ i∞

−i∞
sin(πν)

2

[
∂Ûν+1

∂θ

∣∣∣∣∣
σ

− ∂Ûν−1

∂θ

∣∣∣∣∣
σ

+ 2η ν (Ûν − vν)

∣∣∣∣∣
σ

]
Kν(−ikr) dν = 0,

which implies the validity of (22). When deforming the contours into the imaginary axis, we exploited the regularity

of ∂Ûν
∂θ

|σ in the strip �δ . The boundary condition (5) is similarly treated. The boundary-value problem (20–23)
is non-traditional because it is non-local with respect to the spectral variable in view of the boundary conditions
connecting uν |σ , vν |σ and their normal derivatives with a shift in ν .

Let the spectral functions uν(ω, ω0), vν(ω, ω0) solve the problem (20–23); then the Kontorovich–Lebedev inte-
gral representations fulfil the Meixner conditions and, in particular, as kr → ∞ , the acoustic pressure U in the
“oasis”, (i.e., in the domain not illuminated by the reflected rays, θ̂ ′(ω, ω0) > π ) has the asymptotic form

U(kr, ω, ω0) = D(ω,ω0)
eikr

−ikr

(
1 +O

(
1

kr

))
, (26)

where

D(ω,ω0) = 2

i

∫ i ∞

−i ∞
ν sin(πν) uν(ω, ω0) dν (27)

is the scattering amplitude (diagram). The analogue of this formula has been obtained in [4] for an ideal cone.
This characteristic function for the diffraction of a spherical wave from the vertex is of most importance in

practice. It is obvious that the diagram depends globally on the spectral function, i.e., on the whole solution of the
problem on the spectral function.

3.1 Incomplete separation of the spherical variables and functional difference equations

We further reduce the boundary-value problem for the spectral function by taking into account the symmetry of the
boundary σ . We separate the angular variables thus

uν(ω, ω0) =
+∞∑
n=−∞

in e−inϕ Ru(ν, n)
P

−|n|
ν−1/2(cos θ)

dθ1P
−|n|
ν−1/2(cos θ1)

, (28)

vν(ω, ω0) =
+∞∑
n=−∞

in e−inϕ Rv(ν, n)
P

−|n|
ν−1/2(− cos θ)

dθ1P
−|n|
ν−1/2(− cos θ1)

, (29)

where θ = θ1 is the equation of σ on the sphere S2 , whereas for uiν we have

uiν(ω, ω0) =
+∞∑
n=−∞

in e−inϕ Ri(ν, n)
P

−|n|
ν−1/2(− cos θ)

dθ1P
−|n|
ν−1/2(− cos θ1)

, 0 < θ0 < θ, ϕ0 = 0, (30)
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where

Ri(ν, n) = in

−4 cos(πν)


(ν + |n| + 1/2)


(ν − |n| + 1/2)
dθ1P

−|n|
ν−1/2(− cos θ1) P

−|n|
ν−1/2(cos θ0)

with dθ := d
dθ .

The series (28), (29) solve Eqs. 20, 21; then substituting them in the boundary conditions (22), (23), we have

Ru(ν + 1, n)− Ru(ν − 1, n) = (−2i)η [w(ν, n)Ru(ν, n)− wt(ν, n)Rv(ν, n)] + Si(ν, n) (31)

and

Ru(ν + 1, n)− Ru(ν − 1, n) = Rv(ν + 1, n)− Rv(ν − 1, n)+ Ti(ν, n), (32)

where

Si(ν, n) = −[Ri(ν + 1, n)− Ri(ν − 1, n)] − 2i ηwt(ν, n)Ri(ν, n),

Ti(ν, n) = −Ri(ν + 1, n)+ Ri(ν − 1, n)

are known functions specified by the incident wave,

w(ν, n) = −iν
P

−|n|
ν−1/2(cos θ1)

dθ1P
−|n|
ν−1/2(cos θ1)

, wt (ν, n) = −iν
P

−|n|
ν−1/2(− cos θ1)

dθ1P
−|n|
ν−1/2(− cos θ1)

.

We remark that

w(ν, n) > 0, and w(ν, n) = 1 + On

(
1

ν

)
, ν → i∞, (33)

where |n| is fixed. The same is valid for −wt .
The problem at hand will be solved if one determines the unknown functions Ru,v(ν, n) from the system of

functional difference equations (31), (32). The solutions are sought among even meromorphic functions which are
regular in the strip �δ and satisfy the estimates

|Ru(ν, n)| ≤ const |ν|1/2| exp[iν(θ1 − θ0)]|, (34)

|Rv(ν, n)| ≤ const |ν|1/2| exp[iν(θ1 − θ0)]| (35)

in this strip, ν → i∞.
It seems that the system of equations (31), (32) cannot be solved explicitly, although the second equation is rather

simple and is equivalent to

Ru(ν, n)+ Ri(ν, n) = Rv(ν, n) (36)

in the corresponding class of functions, which can be demonstrated by use of the Fourier transformation along
imaginary axis.

Taking into account Eq. 36, we reduce (31) to the form

Ru(ν + 1, n)− Ru(ν − 1, n) = −2i ηW(ν, n)Ru(ν, n)+ S(ν, n) (37)

with

S(ν, n) = − [Ri(ν + 1, n)− Ri(ν − 1, n)] , W(ν, n) = w(ν, n)− wt(ν, n).

Equations very similar to (37) were studied in [7,10]; see also [15]. Taking into account the important findings of
[7], we follow mainly the methodology of [10]. Equation 37, a functional difference equation of the second order,
is the main subject of our further studies. Having solved this equation (for example, numerically after reduction to
an integral equation), one can compute the solution of the problem and all important characteristics of the far field
such as scattering amplitudes.
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4 Direct reduction to a Fredholm integral equation

By use of a known procedure (e.g., [23]; see also [19, Chapter 6]) we invert the difference operator at the left-hand
side of (37) and, by taking into account that Ru(ν, n) = Ru(−ν, n), arrive at the integral representation

Ru(ν, n) = η

∫ i∞

0

W(t, n)Ru(t, n) sin(πt)

cos(πt)+ cos(πν)
dt − Ri(ν, n). (38)

The representation (38) enables one to determine Ru(ν, n) in the strip |Re ν| < 1 provided the value of Ru(t, n) is
known on the positive imaginary axis. Letting ν ∈ iR (i.e., on the imaginary axis) at the left-hand side of (38), we
arrive at an integral equation for Ru(t, n). It can be demonstrated that the integral equation is, in some appropriate
sense, equivalent to the functional difference equation in the corresponding class of functions.

A remarkable property of the integral equation (38) is that its solution is unique (Re η > 0) in the respective
class of functions [7,10]. In Appendix A we demonstrate subsequently that the integral equation possesses the
Fredholm property (its operator can be represented as a sum of boundedly invertible and compact operators); then
its solvability follows from uniqueness, which is a standard trick for this kind of equation.

The Fredholm property (Appendix A) is of principal importance for the integral equation at hand, because, apart
from its unique solvability, it ensures convergence and stability of the reasonable numerical procedures for the
solution.

5 Alternative integral representations of the solution for positive k

The Kontorovich–Lebedev representations of the solution U,V converge in conditions (16), (18), i.e., the wave
number k is complex. However, one can get an “analytic continuation” for real k. It is especially important for
studying the far-field asymptotics [10]. Although we do not exhaustively consider the formulae for the far field
herein, an alternative representation for the solution for real k can be found on the basis of the regularized form of
the Kontorovich–Lebedev integrals [24]. However, other approaches are also possible.

The integral representation for the wave field with the Macdonald function admits modification to such a form
which is valid for real k without limitations on θ̂ ′(ω, ω0)

4

U(kr, ω, ω0) = 4i

√
π

2

∫ ∞ei�

∞e−i�
νe−iπν/2uν(ω, ω0)

Jν(kr)√−ikr
dν, (39)

where � ∈ (0, π/2), whereas the contour of integration comprises those singularities of uν(ω, ω0) on ν which are
located on the real positive axis. The integral representation (39) is an analytic continuation of the representation
(17) on real values of k and any ω ∈ S2\�. Indeed, in conditions (18) we exploit the correlation

sin πνKν(−ikr) = π

2
[eiπν/2J−ν(kr)− e−iπν/2Jν(kr)]

and transform the integral (17) to the equivalent form

U(kr, ω, ω0) = 4i

√
π

2

∫ i∞

−i∞
νe−iπν/2uν(ω, ω0)

Jν(kr)√−ikr
dν, (40)

where the integral converges exponentially. Provided the modulus of ν = |ν|eiφ, (|φ| < π/2) is sufficiently large,
Jν(kr) ∼ (kr/2)ν/
(ν + 1), and the estimate

|e−iπν/2uν(ω, ω0)Jν(kr)| ≤ C exp[−|ν| log |ν| cosφ

−|ν|(sin φ(argk − π/2 − φ)+ | sin φ|θ̂ ′(ω, ω0)− cosφ[1 + log(|k|r/2)])]

4 This observation is due to V.P. Smyshlyaev, Bath University, UK.
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Acoustic scattering by a circular semi-transparent conical surface 393

is valid, where |kr| is arbitrarily fixed. For sufficiently large |ν|, log |ν| > 1 + log(|k|r/2) we deform the contour
in (40) into Cφ = (e−iφ∞, eiφ∞), where φ ∈ [0, π/2) and get the exponentially convergent integral (39) for real
k and any ω ∈ S2.

Another way is to use the Sommerfeld representation (see also [8])

U(r, ω, ω0) = 1√−ikr

1

2iπ

∫

γ

e−ikr cosα�(α, ω, ω0)dα, (41)

where γ is the double-loop Sommerfeld contour,

�(α,ω, ω0) = √
2π
∫ +i∞

−i∞
ν uν(ω, ω0)(e

iνα − e−iνα)/2dν. (42)

Similar formulae are valid for the pressure V . The formulae (41), (42) are well suited for the derivation of the
far field. The contour of integration in (41) is deformed into the steepest-descent paths and the singularities of the
integrand in the complex plane α can be captured. The branch points are responsible for the reflected wave,
the poles are for the surface waves. The saddle points ±π give rise to the spherical wave from the vertex (see [10]).
A detailed study of the far field will be discussed elsewhere. For example, in the axi-symmetric case (θ0 = 0), for
the scattering amplitude in the “oasis” (0 ≤ θ < 2θ1 − π ) one has

D(ω,ω0) = 2

i

∫ i∞

−i∞
ν sin(πν) Ru(ν, 0)

Pν−1/2(cos θ)

dθ1Pν−1/2(cos θ1)
dν, (43)

where Ru(ν, 0) is determined from the Fredholm integral equation (38) and the integral in (43) converges rapidly.
The value θsing = 2θ1 − π corresponds to the singular direction in which the scattering amplitude has a singularity
and formula (43) is not applicable. In these directions the far wave field is described by parabolic cylinder functions.

6 Numerical aspects and examples

To solve the Fredholm integral equation (38), the asymptotic behaviour of Ru(ν, 0) has been taken into account
explicitly via Ru(ν, 0) = ρu(ν) exp(iνθ1). Then the semi-infinite domain of integration has been transformed into

a finite one with the aid of ν = ip

θ1
log

1 + ξ

1 − ξ
, p � 1. A quadrature method based on Gauss–Legendre scheme is

applied to the resulting integral equation for ρu(ν), leading to its fast and accurate solution.
The scattering diagram D(ω,ω0) is obtained by evaluating the integral expression (43) using a 20-point

Gauss–Laguerre scheme. The values of ρu(ν) have been calculated via an integral extrapolation.
Figure 2 displays the amplitude of the scattering diagram as a function of the angle θ and the impedance η. In the

Neumann case with η = 0, the solution is exact and agrees with that given in [9]. The larger the absolute value of η,
the more transparent does the cone become, and hence the weaker the scattering diagram will be. As θ approaches
the singular direction θsing, the scattering diagram increases.

The dependence of the scattering diagram upon the opening angle of the cone for a certain impedance η is shown
in Fig. 3. With decreasing opening angle θ1 the range of the oasis becomes smaller and is also closer to the singular
direction. As θ1 → π/2, the far-field asymptotics (26), and hence the scattering diagrams lose their validity.

The results shown in Figs. 2 and 3 have been obtained using 100 abscissae in the Gauss–Legendre scheme,
p = 20.

7 Conclusion

The proposed approach based on incomplete separation of variables enabled us to reduce the problem to functional
difference equations and then to Fredholm integral equations. The numerical solution of the integral equations
has been used for evaluation of the scattering diagram for the wave scattered from the cone’s vertex. To that end
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Fig. 3 Scattering diagram for different cone-openings

we exploited the explicit integral representation of the scattering diagram in the “oasis”, i.e., in the domain not
illuminated by reflected or transmitted rays.

By means of alternative integral representations of the solution one can also deduce the expressions of waves
reflected and transmitted by the conical surface, the surface waves which may arise for Im η < 0 [10] and the
spherical wave outside the “oasis”. However, to this end some additional technical tools should be developed. The
numerical results in the “oasis” for the non-axial incidence, as well as those for the corresponding electromagnetic
analogue of the problem at hand, have been also obtained. We expect to consider these questions and to report the
mentioned results in forthcoming publications.
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Appendix A: Fredholm property

It is convenient to reduce the integral equation (38) by introducing the new variable x = 1/ cos(πν) and a new
unknown function

r(x, n) = Ru(ν, n) cos(πν)|x=1/ cos(πν) .

We have

r(x, n) + η

π

∫ 1

0

W(y, n) r(y, n)dy
x + y

= ri (x, n), (44)

where

ri (x, n) = −Ri(ν, n) cos(πν)|x=1/ cos(πν),

W(x, n) = W(ν, n)|x=1/ cos(πν).

We assume that |n| is fixed. From the asymptotics of the Legendre function as ν → i ∞ we have

|Ri(ν, n)| ≤ const |ν|1/2
∣∣∣eiν(θ1−θ0)

∣∣∣ ,

|ri (x, n)| ≤ const
∣∣∣log1/2(2/x)

∣∣∣ x θ1−θ0
π

−1, x ∈ (0, 1]. (45)

The estimates (45) show that the Eq. 44 is to be naturally considered in Lp(0, 1) for 1 < p < p∗ = π
π−(θ1−θ0)

.
Our aim in the present Appendix is to demonstrate that, provided Re η > 0 and n is arbitrarily fixed, the

operator in (44) can be represented5 as D +K , where D is a boundedly invertible (Dixon) operator,

(D r) (x) := r(x) − λ

∫ 1

0

r(y) dy

x + y
, λ = −2η/π, (46)

and the operator K,

(K r) (x) := η

π

∫ 1

0

W(y, n) − 2

x + y
r(y, n) dy (47)

is compact.
To prove the above conjecture we note that, as ν → i∞ and n is fixed, one has

W(ν, n) = 2 + On

(
1

ν

)
, W(x, n) = 2 + On (1/ log(2/x)).

The Dixon operator D [25] is boundedly invertible (Re η > 0) in Lp(0, 1) and, moreover, the inverse can be
explicitly found (see also [7]). Together with Eq. 44 for some technical simplifications we consider its equivalent
(adjoint) form written for ρ(x, n) = W(x, n)r(x, n)

ρ(x, n) + ηW(x, n)

π

∫ 1

0

ρ(y, n)

x + y
dy = ρi(y, n), (48)

ρi(x, n) = W(x, n)ri (x, n). Equations 48 and 44 have simultaneously the Fredholm property. We write (48) in the
form

ρ(x, n) + 2η

π

∫ 1

0

ρ(y, n)

x + y
dy + (K ′ρ)(x, n) = ρi(x, n), (49)

(
K ′ ρ

)
(x) = η

W(x, n) − 2

π

∫ 1

0

ρ(y) dy

x + y
.

It is demonstrated in the following section that the operatorK ′ (and thereforeK) is compact. Thus we conclude
that the operator D +K is Fredholm and (44) is uniquely solvable for any n.

5 This kind of splitting was discussed in [7] in L2(0, 1).
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Compactness of the integral operator

We study compactness of the operator K ′ in (49). We exploit herein the known criterion of compactness of a set
in Lp(0, 1). Recall that a set T ⊂ Lp(0, 1) is compact if it is bounded and for any ε > 0 there exists δ > 0 such
that for any |t | < δ

‖g(x + t) − g(x) ; Lp(0, 1)‖ < ε

for all g ∈ T .
The operator K ′ is bounded in Lp(0, 1) . One has

‖ (K ′ r
)
(x + t) − (

K ′ r
)
(x) ; Lp(0, 1)‖p

= η

π

∫ 1

0
dx

∣∣∣∣(W(x, n) − 1)
∫ 1

0
r(y, n)

(
1

x + y + t
− 1

x + y

)
dy

∣∣∣∣
p

≤ c

∫ 1

0
dx

∣∣∣∣∣
1

log
(
x+1
x

)
∣∣∣∣∣
p ∣∣∣∣
∫ 1

0
dy

(
r(y)

x + y + t
− r(y)

x + y

)∣∣∣∣
p

≤ c1 ‖r ; Lp(0, 1)‖p
∫ 1

0
dx

1

logp
(
x+1
x

)
[∫ 1

0
dy

∣∣∣∣
1

x + y + t
− 1

x + y

∣∣∣∣
q]p/q

,

(50)

where we used the Hölder inequality with 1/p + 1/q = 1. It remains to verify that for any ε > 0 one can take δ
such that for |t | < δ the iterated integral at the right-hand side of (50) is less than ε. The latter follows from the
inequality

(
q = p

p−1

)

∫ δ

0
dx

1

|log x|p
[∫ δ

0
dy

∣∣∣∣
1

x + y + t
− 1

x + y

∣∣∣∣
q]p/q

≤ C

∫ δ

0
dx

1

|log x|p
[(

1

x

)−1+q]p/q

= C

∫ δ

0

dx

x |log x|p ≤ C1 1/ |log δ|p−1, p > 1.

The case |n| � 1 and convergence of the series for the spectral functions

In order to study convergence of the series in (28), (29) we should study the behaviour of the summands in the
series. To this end we turn to the properties of the operator in (44) as |n| � 1. We exploit the asymptotics of the
Legendre function [26]

P
−|n|
ν−1/2(cos θ) = (sin θ)|n|


(|n| + 1)

⎡
⎢⎣

[(
ζ cos θ +

√
1 − ζ 2 sin2 θ

)
/
(
1 + ζ 2

)]ζ

cos θ +
√

1 − ζ 2 sin2 θ

⎤
⎥⎦

|n| (
1 +O

(
1

|n|
))

,

where |n| � 1, ζ = ν/n, ζ outside a close vicinity of 1/ sin θ . Actually we are interested in the case |ζ | ≤ q < 1.
Taking into account the asymptotics above, for W(ν, n), we have

|W(ν, n)| ≤ |ν|
|n| |ψ(ζ )| . (51)

Here ψ(ζ ) is bounded as ν ∈ [0, i|n|/A], |n| � 1, A is some fixed number (A > 1 ). The function W(ν, n)
remains also bounded as ν → i∞ , |n| → ∞ , |ν| > |n| . For any fixed x ∈ (0, 1] in view of (51) one has

lim|n|→∞W(x, n) = 0.
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Consider the sequence of operators Kn
1 defined by the equality

(Kn
1 ρ)(x) = ηW(x, n)

π

∫ 1

0

ρ(y)

x + y
dy.

On exploiting the Lebesgue theorem on the limit transition in the integral, one has

‖Kn
1 ρ ;Lp(0, 1)‖ → 0, |n| → ∞,

for any ρ such that ‖ρ;Lp(0, 1)‖ ≤ 1, i.e., the sequence of the operators Kn
1 strongly tends to zero.

Thus we have the estimate

‖(I +Kn
1 )ρ;Lp(0, 1)‖ ≥ ‖ρ;Lp(0, 1)‖ − ‖Kn

1 ρ;Lp(0, 1)‖

≥ ‖ρ‖ − ‖Kn
1 (ρ/‖ρ‖)‖ ‖ρ‖ ≥ ‖ρ‖ − ε‖ρ‖ = (1 − ε)‖ρ;Lp(0, 1)‖

for some ε > 0 and for all |n| > |n0| and ρ. This also means that the operators in (44) and (48) are boundedly and
uniformly invertible with respect to n.

So we have demonstrated that, provided |n| is sufficiently large (|n| � 1), the operator in the Eq. 48 is boundedly
invertible (the norm of the inverse is bounded uniformly with respect to n) in Lp(0, 1), 1 < p < p∗ .

We can conclude that for the solution of (44) as |n| � 1 the estimate is valid

‖r ; Lp(0, 1)‖ ≤ C ‖ri ; Lp(0, 1)‖, (52)

where the constant C is independent of |n| , θ1 , θ0 . This estimate is crucial for the proof of convergence of the
series (28), (29) in Lp(0, 1) uniformly with respect to θ, ϕ, θ0. This convergence (the details can be found in [10])
is a simple consequence of the estimate (52) and of the fact that the series for uiν converge. It can be shown that the
spectral functions uν, vν are found to belong to the desired class of functions: they are meromorphic, are regular
as ν ∈ �δ and vanish exponentially as ν → i∞. Their singularities belong to the real axis on ν-plane.

Appendix B: Functional difference equation and Carleman boundary-value problem for analytic vectors

In the present Appendix we demonstrate that the problem for the functional difference equation (37) is reducible to a
boundary-value problem of Carleman type [27] for analytic vectors. Indeed, we reduce the second-order functional
difference equation to a system of two equations of the first order by adopting the notations

ψ1(ν) = Ru(ν, n), ψ2(ν) = Ru(ν − 1, n).

Then we find from (37)

�(ν + 1) = A(ν)�(ν)+ ξ(ν), (53)

where �(ν) = (ψ1(ν), ψ2(ν))
T ,

A(ν) =
⎛
⎝

−2iηW(ν, n) 1

1 0

⎞
⎠ , ξ(ν) =

⎛
⎝
S(ν, n)

0

⎞
⎠ .

A system of equations similar to (53) was studied in [17] by Buslaev and Fedotov from another point of view. The
vector � is regular in the strip �1 = {ν : 0 < Re ν < 1} and vanishes exponentially as ν → ±i∞.

We apply the conformal mapping of the strip�1 onto the upper half-plane τ = exp(iπν) so that the left boundary
of the strip is mapped onto R+ and we arrive at the Carleman-type boundary-value problem for analytic vectors

ψ(α(τ)) = a(τ)ψ(τ)+ ξ0(τ ), τ ∈ R+ (54)

where α(τ) = −τ, ψ(τ) = �(ν(τ)) and a(τ) = A(ν(τ)), ξ0(τ ) = ξ(ν(τ )), α(α(τ)) = τ . The problem is to
find an analytic vector in the upper half-plane satisfying the boundary condition (54) and vanishing as τ → 0 and
τ → ∞.

The Carleman problem is known to be reducible to integral equations [27]; however, we do not intend to exploit
this reduction.
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